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ABSTRACT 
 
The prediction of scour hole downstream a hydraulic structure is estimated quite often 
through physical and mathematical models. However, physical models are costly and 
not easily available for testing all hydraulic conditions and mathematical models were 
derived to represent certain hydraulic conditions. In this paper, Artificial Neural 
Network (ANN) modeling using back-propagation learning technique was formulated 
to predict the maximum scour hole depth and length downstream hydraulic structure. 
The data used to train the ANN was obtained from a test series of physical model. The 
discharge, velocity, gate opening, bed material and length of apron were used as input 
parameters to ANN while scour hole depth and length as the output parameters. 
Results of ANN show good estimation of maximum scour hole in terms of both depth 
and length of the scour hole compared to the measured data from physical model. An 
advantage of the use of ANN in the prediction of maximum scour hole depth and 
length that it will certainly decrease the cost and time for physical modeling and help 
in simulating different hydraulic conditions of the hydraulic structure. 
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INTRODUCTION 
 
Stilling basins are used mainly to ensure the safety of hydraulic structures against the 
erosive power of the issuing high velocity jet in the downstream. In order to study the 
stilling basins of the sluiceways that recently constructed along the Nile River, such as 
New Esna Barrage, New Naga Hammadi Barrage, and the future similar irrigation 
projects, physical models are made through hydraulic flumes which usually are two 
dimensional physical model, (AbddelAzim, 2005). To investigate different design of 
sluiceway stilling basin through obtaining suitable stilling basin that gives minimum 
scour downstream the apron, the best velocity distribution along the stilling basin, 
minimum velocity near bed, the shortest length of submerged hydraulic jump and the 
highest energy dissipation. The study was carried out in case of submerged hydraulic 
jump take place downstream the gate. 
 
During the testing of the physical model of the New Esna Barrage, it has been 
observed that significant scour occurred immediately downstream the stilling basin 
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that exceeded the expected values. This observation has been further verified during 
the monitoring of the structure. The same findings were repeated with the model 
testing of the New Naga Hammadi Barrage design. In both cases, a significant design 
modification has been introduced using trial and error based on expert opinions. 
Therefore, this problem highlights the need to develop some design criteria suitable for 
Nile River conditions to be used in the future applications (AbddelAzim, 2005). 
 
Applications of ANN in the Field of Scour 
 
Review of the applications of the ANN in different branches of Water Engineering 
could be found in Negm (2002). In the field of scour, very little number of studies are 
available in the literature. Kheireldin (1999) used the ANN to develop a prediction 
model to predict the maximum depth of scour around bridge abutments. It was 
concluded that the ANN approach performed well for one set of data (305 runs) and its 
performance was not satisfactory for another set of data (66 runs). Liriano and Day 
(2001) applied the ANN to develop a prediction model to predict the scour depth at 
culvert outlet. They used in addition to their own data the previously published ones as 
training data to the proposed ANN model. They concluded that the ANN could be 
used to predict the scour depth at the culvert outlet with a greater accuracy compared 
to the available empirical scour formulae. Negm (2002) developed ANN model to 
predict the length and depth of hydraulic jump while Negm et al. (2002) utilized ANN 
prediction model for maximum scour hole depth downstream of sudden expanding 
stilling basins. The present study presents a new developed ANN to predict both length 
and depth of the scour hole downstream hydraulic structures, case of barrage. 
 
 

 
 

Figure 1 Stilling basin setup 
 
 
ARTIFICIAL NEURAL NETWORKS 
 
Artificial neural networks, ANN's, as they are known today, originate from the work 
of McCulloch and Pitts (1943), who demonstrated the ability of interconnected 
"neurons" to calculate some logical functions. Hebb (1949) pointed out the importance 
of the synaptic connections in the learning process. Later, Rosenblatt (1958) presented 
the first operational model of a neural network: the ‘Perceptron’. The perceptron, built 
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as an analogy to the visual system, was able to learn some logical functions by 
modifying the synaptic connections. 
 
ANNs are massively parallel, distributed and adaptive systems, modeled on the 
general features of biological networks with the potential for ever improving 
performance through a dynamical learning process (Bavarian, 1988). Neural networks 
are made up of a great number of individual processing elements, the neurons, which 
perform simple tasks. A neuron, schematically represented in Fig. 2, is the basic 
building block of neural network technology which performs a nonlinear 
transformation of the weighted sum of the incoming inputs to produce the output of the 
neuron. The input to a neuron can come from other neurons or from outside the 
network. The nonlinear transfer function can be a threshold, sigmoid, a sine or a 
hyperbolic tangent function. 
 
 

 

 
 

Figure 2 a Simple processing neuron 
 
 
Neural networks are comprised of a great number of interconnected neurons. There 
exists a wide range of network architectures. The choice of the architecture depends 
upon the task to be performed. For the modeling of physical systems, a feed forward 
layered is usually used. It consists of a layer of input neurons, a layer of output 
neurons and one or more hidden layers. In the present work, a three-layer feed forward 
network was used. 
 
In a neural network, the knowledge lies in the interconnection weights between neuron 
and topology of the networks (Jones and Hoskins, 1987). Therefore, one important 
aspect of a neural network is the learning process whereby representative examples of 
the knowledge to be acquired are represented to the network so that it can integrate 
this knowledge within its structure. Learning implies that the processing element 
somehow changes its input/output behavior in response to the environment. The 
learning process thereby consists in determining the weight matrices that produce the 
best fit of the predicted outputs over the entire training data set. The basic procedure is 
to first set the weights between adjacent layers to random values. An input vector is 
then impressed on the input layer and is propagated through the network to the output 
layer. The difference between the computed output vector of the network and the 
target output vector is then adapt the weight matrices using an iterative optimization 
technique in order to progressively minimize the sum of squares of the errors (Hornik 
et al., 1989). The most versatile learning algorithm for the feed forward layered 
network is back-propagation (Irie and Miyanki, 1988). The back-propagation learning 
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law is a supervised error-correction rule in which the output error, that is, the 
difference between the desired and the actual output is propagated back to the hidden 
layers. Now, if the error at the output of each layer can be determined, it is possible to 
apply any method which minimizes the performance index to each layer sequentially. 
Multi-Layer Perceptrons (MLP) are perhaps the best-known type of feed forward 
networks. MLP has generally three layers: an input layer, an output layer and an 
intermediate or hidden layer. Neurons in the input layer only act as buffers for 
distributing the input signal xi to neurons in the hidden layer. Each neuron j in the 
hidden layer sums up its input signals xi after weighting them with the strengths of the 
respective connections Wji from the input layer and computes its outputs yj as a 
function f of the sum, as: 
 

( )�= ij Xy ijWƒ         (1) 
 
Where, f can be a simple threshold function or a sigmoid, hyperbolic tangent or radial 
basis function. 
 
The output of neurons in the output layer is computed similarly. The back-propagation 
algorithm, a gradient descent algorithm, is the most commonly adopted MLP training 
algorithm. It gives the change �wji in the weight of a connection between neurons j 
and i as follows. 
 

ijij XW ηδ=∆         (2) 
 
where � is a parameter called the learning rate and 	j is a factor depending on whether 
neuron j is an output neuron or a hidden neuron. For output neurons, 
 

( )j
t
j

j
j yy

net
f −�

�

�

�

�
�

�

�

∂
∂=δ        (3) 

 
and for hidden neurons, 
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In equation (3), netj is the total weighted sum of input signals to neuron j and yj(t) is 
the target output of neuron j. As there are no target outputs for hidden neurons, in 
equation (4), the difference between the target and actual output of a hidden neuron j is 
replaced by the weighted sum of the 	q terms already obtained for neurons q connected 
to the output of j. Thus, iteratively, beginning with the output layer, the 	j term is 
computed for neurons in all layers and weight updates determined for all connections. 
 
Back-propagation searches on the error surface by means of the gradient descent 
technique in order to minimize the error. It is very likely to get stuck in local minima. 
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Various other modifications to back-propagation to overcome this aspect of back-
propagation have been proposed and the Levenberg-Marquardt modification (Hagan 
and Menhaj, 1994) has been found to be a very efficient algorithm in comparison with 
the others like Conjugate gradient algorithm or variable learning rate algorithm. 
 
Levenberg-Marquardt works by making the assumption that the underlying function 
being modeled by the neural network is linear. Based on this calculation, the minimum 
can be determined exactly in a single step. The calculated minimum is tested, and if 
the error there is lower, the algorithm moves the weights to the new point. This 
process is repeated iteratively on each generation. Since the linear assumption is ill-
founded, it can easily lead Levenberg-Marquardt to test a point that is inferior (perhaps 
even wildly inferior) to the current one. The clever aspect of Levenberg-Marquardt is 
that the determination of the new point is actually a compromise between a step in the 
direction of steepest descent and the above-mentioned leap. Successful steps are 
accepted and lead to a strengthening of the linearity assumption (which is 
approximately true near to a minimum). Unsuccessful steps are rejected and lead to a 
more cautious downhill step. Thus, Levenberg-Marquardt continuously switches its 
approach and can make very rapid progress. 
 
The equations for changing the weights during training in Levenberg-Marquardt 
method are given as follows: 
 

( ) eJIJJWModifying TT 1−
+=∆� µ      (5) 

 
where J is the Jacobian matrix of the derivative of each error to each weight, µ is a 
scalar and e is an error vector. The Levenberg-Marquardt algorithm performs very 
well and its efficiency is found to be of several orders above the conventional back 
propagation with learning rate and momentum factor. 
 
 
EXPERIMENTAL DATA COLLECTED FOR ANN TRAINING 
 
Physical model was used to simulate one bay of the sluiceway consisting of a gated sill 
and two half-piers (9.5 cm thick each) symmetrically installed on both wall sides. A 
bras radial gate with a radius of 0.524 m is used to regulate the flow. The experiments 
were conducted using a 1.0 m wide, 26.0 m long and 1.20 m deep flume. The 
sidewalls along the entire length of the flume are made of glass with steel-frames, to 
allow visual investigation of the flow patterns. Different shapes of stilling basins will 
be used to investigate the shape that can mostly dissipate the energy of the flow 
downstream the radial gate.  
 
The test setup had a horizontal apron with different elevations. The series consisted of 
three designs and the test series were referred to as series, where the vertical distances 
(e) between the sill under the gate and the apron were 0.17 m, 0.00m and 0.09 m. Also, 
the inclination of the apron, downstream the gate had an angle of α =30o. Figure 1; 
show the geometric shapes of this test setup. 
 



Eleventh International Water Technology Conference, IWTC11 2007 Sharm El-Sheikh, Egypt 
 

 

���

RESULTS OF NEURAL MODELLING 
 
The critical step in building a robust ANN is to create an architecture, which should be 
as simple as possible and has a fast capacity for learning the data set. The robustness 
of the ANN will be the result of the complex interactions between its topology and the 
learning scheme. The choice of the input variables is the key to insure complete 
description of the systems, whereas the qualities as well as the number of the training 
observations have a tremendous impact on both the reliability and performance of the 
ANN. Determining the size of the layers is also an important issue. One of the most 
used approaches is the constructive method, which is used to determine the topology 
of the network during the training phase as an integral part of the learning algorithm. 
The common strategy of the constructive methods is to start with a small network, 
train the network until the performance criterion has been reached, add a new node and 
continue until a ‘global’ performance in terms of error criterion has reached an 
acceptable level. The final architecture of neural net used in the analysis is shown in 
Fig. 3. 
 

 
 

Figure 3 Back-Propagation Algorithm 
 
Input parameters include discharge (q), head difference (�h), apron length (La), 
downstream bed material (D50) or riprap while the output target parameters were the 
depth and length of downstream scour hole as Ds and Ls respectively. Input data 
collected from physical model were used for training. Two third of the data were 
utilized for training while the rest of the data were for verification purpose.  Figure 4 
shows the comparison between the measured maximum scour hole depth and ANN 
estimated one. The plot shows a good prediction through the R2 which equal to 0.98.  
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Figure 4 Comparison between measured max scour depths and estimated one via ANN 
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Figure 5 Comparison between measured max scour lengths and estimated one via ANN 
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Figure 5 shows the comparison between the measured maximum scour hole length and 
ANN estimated one. The plot shows a good prediction through the R2 which is equal 
to 0.99.  
 
A sensitivity analysis was done through eliminating one of the parameters and use 
there parameters as only available input data and estimate the scour hole depth and 
length. Through this process, it is found that R2 was decreased due to missing on of the 
input data set. The lower value for R2 represents the high sensitive parameter while the 
less value for representing the less sensitive one, which was found to be in the 
sequence with discharge, head difference, bed material or riprap, apron length 
respectively as the high sensitive to the less one. 
 
 
CONCLUSIONS 
 
The results presented in this paper have clearly shown that the neural network 
methodology can be used efficiently to predict the scour hole depth and length. The 
main advantage of neural networks is to remove the burden of finding an appropriate 
model structure or to find a useful regression equation. The network showed excellent 
learning performance and achieved good generalization. 
 
ANN prediction for maximum scour hole for depth and length decreases the cost and 
time for performing physical models but will not replace it.  
 
Sensitivity analysis with the trained neural net or during training could provide 
valuable additional information on the relative influence of various parameters. 
 
The scour hole depth and length downstream hydraulic structure have been found to 
increase continuously with discharge, head difference, bed material or riprap, apron 
length, respectively. 
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